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Abstract

During the COVID period, the vacancy-to-unemployment ratio (V/U) emerged as a

more accurate measure of labor market tightness than the unemployment rate (U).

However, some argue that this claim may be over-fitting the COVID-19 pandemic

episode. This paper addresses this critique by using pre-pandemic time-series data

and exploits better identification from Metropolitan Statistical Area (MSA)-level panel

data. I construct state-space models and apply the Kalman filter to MSA-level panel

data, thereby jointly estimating a non-linear Phillips curve and time-varying natural

rates of U and V/U. Time series data alone cannot distinguish between the two mea-

sures on pre-pandemic data, but panel data indicates that V/U is superior. These

findings show that V/U was a better measure of economic slack even before the pan-

demic, and suggest a greater role for it in economic forecasting and monetary policy.
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1 Introduction

The Phillips curve (PC) is a central concept in macroeconomics that links inflation to la-
bor market slack. Accurately measuring labor market conditions is a key challenge in
estimating the PC. Historically, since Phillips (1958), there has been a tradition of using
the unemployment rate or its deviation from the natural rate as the measure of slack, a
practice that continues throughout much of the modern literature.

During the COVID-19 pandemic in 2021, a significant puzzle emerged. Inflation rose
sharply, even though the unemployment rate did not change much. This anomaly im-
plies a possible breakdown in the traditional Phillips curve relationship. An idea pro-
posed by some economists, which quickly gained popularity, was to replace the unem-
ployment rate with the vacancy-to-unemployment ratio (V/U) as the measure of labor
market tightness.

This measure has a theoretical appeal because it is the variable that affects wage pres-
sures in search and matching models. Empirically, during the pandemic, vacancies in-
creased significantly, so V/U rose sharply even though U did not change much. By this
measure, the labor market was tight, which would explain why inflation rose. Then,
V/U quickly became a favored variable in many recent papers (Ball, Leigh and Mishra,
2022; Benigno and Eggertsson, 2023; Blanchard and Bernanke, 2023; Cecchetti et al., 2023;
Barnichon and Shapiro, 2024).

However, this shift in the measure of labor market slack has faced criticism. Much of
the evidence for the superiority of V/U comes from the COVID period, raising doubts
about its effectiveness across broader historical contexts (Şahin, 2022). The focus on V/U
may be too specific to post-2021 economic conditions, suggesting that it fits this unique
period rather than being a universally superior measure. Hence, changing the Phillips
curve specification based on just this three-year period risks being seen as “cherry-picking”
evidence.

This paper aims to provide new evidence on the most accurate measure of labor mar-
ket slack, to determine whether V/U is generally the better measure or merely a result
of over-fitting during the COVID period. To achieve this, I extend the empirical work in
two directions.

First, I allow for time-varying natural rates for the V/U ratio, similar to how time-
varying natural rates of unemployment are considered. Traditionally, the non-accelerating
inflation rate of unemployment (NAIRU) was seen as constant until studies in the 1990s
began to recognize its variability over time. Acknowledging that the natural rate of un-
employment changes over time suggests that the natural rate of V/U might also vary.
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Following Staiger, Stock and Watson’s (1997a) work on time-varying natural unemploy-
ment rates, I investigate a time-varying natural rate for V/U, ensuring both measures are
evaluated on comparable grounds.

Implementing this time variation in natural rates presents a challenge. Recent litera-
ture finds that the Phillips curve appears to be non-linear, as inflation rises very sharply
at high levels of V/U (Ball, Leigh and Mishra, 2022). I contribute to the literature by
using state-space models to estimate the natural rates and the Phillips curve coefficients
simultaneously, extending the time-varying natural rate concept to non-linear models.

The second way I advance the empirical work is by using regional-level data, a strat-
egy gaining popularity due to endogeneity problems highlighted in Mavroeidis, Plagborg-
Møller and Stock (2014). They demonstrate that aggregate macroeconomic data struggle
with identification challenges, obscuring empirical insights on the Phillips curve due to
limited information. As a result, studies such as Babb and Detmeister (2017), Fitzgerald
et al. (Forthcoming), Hazell et al. (2022), Hooper, Mishkin and Sufi (2020), and McLeay
and Tenreyro (2020) have moved toward using regional data with two-way fixed effects.

In contrast to aggregate data studies, previous research has not used state-space mod-
els to estimate natural rates for slack measures in a panel setup. In this study, I allow
each metropolitan statistical area to have its own natural rate of slack measures, where
the natural rates can evolve differently across regions.

In my research, I find that in aggregate-level analyses, V/U only outperforms the
unemployment rate when pandemic period observations are included; it does not out-
perform in earlier periods. Therefore, Şahin’s (2022) critique about “cherry-picking” ev-
idence is valid. In contrast, the regional analysis provides stronger support for V/U,
even when excluding the pandemic period, indicating that the effectiveness of V/U is
not merely specific to the COVID period data.

Finally, motivated by these empirical results, I introduce a short-run theoretical model
to demonstrates why the relationship between U and inflation is unstable, and why
V/U naturally appears in the relationship. I build on the Diamond-Mortensen-Pissarides
(DMP) model, where V/U is a critical indicator of labor market tightness. I incorporate
this ratio into macro-econometric models to illustrate its impact on inflation. Drawing
from the works of Blanchard and Katz (1996) and Blanchard and Bernanke (2023), I de-
velop an expectations-augmented, reduced-form Phillips curve.

Layout. The paper is organized as follows. Section 2 explains the inflation anomaly and
the proposed resolution using V/U. Section 3 presents aggregate data analysis. Section
4 discusses identification challenges and offers regional empirical evidence supporting
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V/U. Section 5 examines the wage Phillips curve. Section 6 details the theoretical model
incorporating the V/U ratio into the Phillips curve. Section 7 concludes. Additional
empirical findings are included in the appendix.

1.1 Literature

My paper adds to and builds on the rich literature on the Phillips curve.

Phillips Curve and Natural Rate. This work directly builds on the traditional Phillips
curve literature. Since the introduction by Phillips (1958), the unemployment rate has
been widely used, partly due to its simplicity. Yet, the natural rate was seen as constant
for a long time until it was being recognized as time-varying. Previous research, including
works by Barnichon and Matthes (2017); Brauer (2007); Crump et al. (2019); Fabiani and
Mestre (2004); Gordon (1997); Staiger, Stock and Watson (1997a), typically focused on
aggregate data to estimate time-varying natural unemployment rates. In contrast, this
study also estimates natural rates with nonlinear Phillips curve, and adopts a regional
panel data framework.

Alternative Measures. Another branch of literature explores alternatives to the unem-
ployment rate for measuring labor market slack. Early on, Medoff and Abraham (1981)
suggested the relevance of vacancies, yet the idea initially received limited attention. Re-
cent studies, including Faberman et al. (2020); Hall and Schulhofer-Wohl (2018); Horn-
stein, Kudlyak and Lange (2014), have sought to refine slack measures. Abraham, Halti-
wanger and Rendell (2020) proposed a sophisticated measure of labor market tightness,
adjusting vacancies for the effective search effort across different groups.

The pandemic intensified efforts to find alternative labor market slack measures. In-
terest grew in job openings and quits rates, but the V/U ratio gained prominence due
to its ties to search and matching theory. Recent work like Furman and Powell (2021)
assessed different labor market measures within Phillips curve models, and identified
the quits rate as crucial for explaining wage growth, and found the unemployed-to-job
openings ratio to be a key predictor for core CPI.

In addition, Barnichon and Shapiro (2022) explored the forecasting power of different
measures, noting the V/U ratio’s superiority over the unemployment rate. Barnichon
and Shapiro (2024) further demonstrated that shifts in the Beveridge curve can contribute
to inflation. Domash and Summers (2022a,b) found that both unemployment rate and
vacancies are key predictors of wage inflation and developed a firm-side predicted un-
employment rate using these metrics. They contend that this firm-side rate matches the
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explanatory power of the actual unemployment rate for wage inflation dynamics.

Cross-sectional Phillips Curve. This growing empirical branch within Phillips curve
literature highlights identification challenges with aggregate data and suggests cross-
sectional data as a solution to reduce bias in national estimates.

Hazell et al. (2022) review recent cross-sectional studies, underscoring national-level
challenges such as monetary policy endogeneity, difficulty in measuring inflation expec-
tations and their correlation with slack, and distinguishing between demand and supply
shocks. They constructed new state-level inflation measures (headline, non-tradable, and
tradable) and estimated the Phillips curve at the state level. Their findings suggest that
changes in inflation dynamics are significantly influenced by the long-term inflation ex-
pectations, documenting the flattening of the Phillips curve.

Several researchers underscore the value of leveraging regional variations for better
identification. McLeay and Tenreyro (2020) and Fitzgerald et al. (Forthcoming) demon-
strate that monetary policy biases national time-series studies on the Phillips curve rela-
tionship. They suggest that cross-sectional data can unveil a stronger link between un-
employment or output gaps and inflation, given how central bank optimal actions can
obscure the national-level Phillips curve. Similarly, Hooper, Mishkin and Sufi (2020) finds
that regional inflation data can mitigate aggregate time-series biases.

Moreover, studies like Babb and Detmeister (2017) and Kiley (2014) use metropolitan
or city-level data for Phillips curve estimations. Another segment focuses on the producer
price index (Firat, 2022a; Heise, Karahan and Şahin, 2022). This literature collectively
highlights the importance of gathering stronger evidence from disaggregated data.

Theoretical Work. This paper’s theoretical model draws from the Diamond-Mortensen-
Pissarides (DMP) framework. Seminal works by Pissarides (1985) and Mortensen and
Pissarides (1994) emphasize the V/U ratio’s critical role in the labor market’s search and
matching process. This ratio, a key indicator of labor market tightness, directly impacts
job-finding and job-filling rates, as well as wage negotiations. My model, while rooted
in the DMP framework’s concepts of endogenous job dynamics, specifically addresses
short-run business cycle variations with exogenously set number of jobs.

Further, the model integrates the aggregate wage-price determination approach from
Blanchard and Bernanke (2023) and Blanchard and Katz (1996), focusing on connecting
Nash-bargain wage to price inflation in the simplest way. This approach differs from
Blanchard and Galí (2010)’s dynamic stochastic general equilibrium model that incorpo-
rates search frictions within a New Keynesian context.
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2 The Inflation Anomaly

The Phillips curve has long served as the stylized model for analyzing inflation, depicted
as:

πt = πe
t − f (slackt) + νt, (1)

where inflation is determined by expectations, labor market slack, and supply shocks (νt).

The Anomaly Historically, the unemployment rate was the standard and go-to metric
for labor market slack. The sudden inflation increase in 2021, however, caught many by
surprise, challenging the prevailing theory.

Figure 1: Phillips Curves based on Unemployment Rate

Figure 1 displays a scatter plot of the inflation gap, defined as median CPI inflation
minus the SPF 10-year forecast, against the unemployment rate. I investigate the infla-
tion gap’s trajectory against the unemployment rate since 1985. Using quarterly data, I
compare the inflation gap with the unemployment rate’s 4-quarter average (current and
the preceding three quarters), effectively considering the lagged impact of labor market
slack on inflation. Different markers represent various sample periods; the first spans
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from 1985 to 2019, pre-pandemic, and the second from 2020 to 2023, the COVID era and
beyond. The first sample comprises of observations from 1985 to 2019, noted for a long
period of low inflation and a soft labor market on average. The subsequent period, 2020
to 2022, known as the COVID era, experienced heightened inflation and tightened labor
market.

From 1985, the data show a downward-sloping linear relationship between the infla-
tion gap and unemployment rate, consistent with the standard expectations-augmented
Phillips curve. However, a significant shift occurred in 2021, with newer data points
clustering in the graph’s upper-left, marked by not particularly low unemployment rates
but elevated values of inflation gap. These conditions, high inflation alongside moder-
ate unemployment rates, were unparalleled in the post-1985 national time-series, baffling
numerous economists and policymakers. This inflation anomaly has thus reignited the
discussion on the most accurate labor market slack indicator.

The Proposed Resolution. The quest to reconcile high inflation with traditional Phillips
curve relationships has gained momentum.

Figure 2: Phillips Curves based on V/U Ratio

Since the fourth quarter of 2000, the Bureau of Labor Statistics (BLS) introduced the Job
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Openings and Turnover Survey (JOLTS), detailing labor market conditions, which was
initially overlooked but has recently garnered attention. Among alternative measures,
the V/U ratio gradually gains its popularity, emerging as the most effective, explaining
the unusual inflation pattern over three years and directly linking to the labor market’s
search and matching model.

To clarify the empirical superiority of the V/U ratio, Figure 2 presents a scatter plot
of the inflation gap against the V/U ratio. Similar to the previous figure, it uses different
markers for the periods 1985–2019 and 2020–2023. The pre-pandemic era is represented
in the lower-left corner, and the COVID era in the upper-right. Data from the pandemic
period appear in the upper-right corner, where inflation rates are considerably higher
than in the pre-pandemic period, corresponding with higher values of V/U. The V/U
ratios are also significantly higher than in the pre-pandemic periods, suggesting much
greater labor market tightness.

Unlike the figure for the unemployment rate, the V/U data reveal a consistent link
between the inflation gap and labor market tightness, with less noise in the relation-
ship. Lower V/U values are associated with smaller inflation gaps, and higher values
with larger gaps. The Phillips curve model using the V/U ratio effectively reduces the
anomaly, maintaining a stable relationship before and after COVID. This consistency has
made the V/U ratio a preferred measure in many recent studies.
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3 V/U vs. U: Aggregate Analysis

The next two sections aim to assess the explanatory and identification power of the V/U
ratio versus the unemployment rate for inflation within a price Phillips curve frame-
work. Initially, the analysis explores fixed natural rate contexts before transitioning to
time-varying natural rates. Then, the subsequent section examines their effectiveness in
wage Phillips curve scenarios. This investigation is conducted at both the national and
regional levels.

Within the Phillips curve framework, as shown in equation (1), comparing two slack
measures involves three critical considerations when formulating the regression model:
selecting an appropriate core inflation measure, defining the sample period to exclude
the effects of the pandemic years, and recognizing the importance of non-linearity. Before
presenting the primary regression model for the aggregate-level analysis, I will discuss
these aspects.

Measuring Inflation and Inflation Expectations. The conventional core inflation mea-
sure excludes food and energy from the headline inflation. However, significant price
shocks are not confined to these sectors alone. The median CPI, an approach that ex-
cludes outliers across all industries, emerges as a more effective alternative for filtering
out significant price changes, as emphasized by studies like Bryan, Cecchetti and Wiggins
(1997) and Ball and Mazumder (2019a,b). This paper thus uses the median CPI as the core
inflation measure. 1

Recent research, including Hazell et al. (2022), re-emphasizes the long-recognized
importance of inflation expectations in determining inflation. This study uses the Sur-
vey of Professional Forecasters (SPF) from the Federal Reserve Bank of Philadelphia for
survey-based inflation expectations. The SPF provides 10-year-ahead inflation expecta-
tions, which are less correlated with current economic conditions and cover a long time
period as Ball, Leigh and Mishra (2022) extended this series back to the 1980s.

Data and Estimation Period. To separate the impact of pandemic-related observations
while also utilizing an extended historical dataset for national level time series analysis,
this study defines the sample period from 1985 to 2019 as the pre-pandemic era. It then
expands the analysis to include data up to 2023, thereby encompassing the effects of re-
cent labor market events.

1Ball, Leigh and Mishra (2022) finds that the Phillips curve fits much better with median inflation on
the left-hand side than with conventional core inflation.
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The Bureau of Labor Statistics (BLS) began publishing Job Openings and Labor Turnover
Survey (JOLTS) data in December 2000. In line with existing research, vacancy rates have
been extended back to 1985 using the help-wanted index from Barnichon (2010), an ap-
proach this paper adopts. Barnichon (2010) provides a longer time series for vacancy rates
dating back to 1951, using help-wanted advertisements to approximate actual V/U ratios
effectively. Utilizing this extended vacancy data, this study compiles a dataset spanning
from 1985 to 2019 for the pre-pandemic period and a broader dataset from 1985 to 2023
on a quarterly basis. 2

Non-linearity. The non-linear impact of labor market slack on inflation has been high-
lighted in numerous studies, including the foundational work of Phillips (1958). Hooper,
Mishkin and Sufi (2020) find empirical evidence that the Phillips curve becomes steeper
when the labor market is tighter. Similarly, Firat (2022b) demonstrate that the wage
Phillips curve exhibits non-linearity, especially in heated labor markets. Additionally, Be-
nigno and Eggertsson (2024) identify a slanted L-shaped Phillips curve, which becomes
steeper in tight markets and flatter as slack increases.

To capture nonlinearity in a flexible way, this research assumes that inflation is a cubic
function of the slack variable. It investigates the V/U ratio’s nonlinear impact on infla-
tion, showing the importance of quadratic and cubic terms in modeling how inflation
responds to labor market slack. 3

Studies show slack measures have linear effects, but a cubic functional form, being
more flexible, encompasses a linear specification as a special case. If slack is truly lin-
ear, coefficients for quadratic and cubic terms should be near zero, with non-significant
p-values. Thus, using a nonlinear specification for all slack measures ensures a fair com-
parison by avoiding bias and unequal advantages.

3.1 OLS Analysis: Fixed Natural Rates

Regression Specification. I now present the primary regression model for aggregate
level analysis, adopting cubic function approach to capture potential nonlinear relation-

2Notably, Bolhuis, Cramer and Summers (2022) mentions that the BLS’s 1981 methodology change for
estimating homeownership costs to owner’s equivalent rent, moving from housing prices and mortgage
costs to rents, could substantially affect two CPI series’ comparability. To align inflation data comparability
and wage inflation data availability, this analysis begins in 1985, following Ball, Leigh and Mishra (2022).

3In the appendix, the analysis highlights the importance of incorporating quadratic and cubic terms in
the aggregate-level Phillips curve equation. This is confirmed by a Wald test on these terms for both the
shorter and full sample periods.
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ships between labor market slack and inflation:

πt − πe
t = β0 + β1St + β2S2

t + β3S3
t + ϵt, (2)

where πt is the quarterly seasonally adjusted annualized Median CPI inflation rate; 4

πe represents 10-year-ahead inflation expectations from the Survey of Professional Fore-
casters (SPF); 5 the slack term, St, is calculated as a four-quarter average of either the
unemployment rate or the V/U ratio.

Estimates. Beginning with the findings, I estimate six variations of the primary equation
(2): two measures of slack (unemployment rate and V/U ratio, with an assumed constant
natural rate) are analyzed separately, and both slack measures are included in the same
regression for a direct “horse race” comparison, across two sample periods (1985 to 2019,
and 1985 to 2023).

In table 1, columns 1 to 3 present the pre-pandemic sample results, while columns 4
to 6 showcase the full sample findings.

The analysis reveals the following conclusions. Pre-pandemic data analysis in columns
1 and 2 shows both the unemployment rate and V/U ratio as significant, with comparable
adjusted r-square values indicating a similar fit. Incorporating both slack measures into
one regression for the pre-pandemic period (column 3) shows they are equally effective in
explaining inflation, as indicated by their p-values. Since both measures are significant at
the 1-percent level, determining a superior measure is challenging, especially when one
does not seem to dominate the other. 6

Analyzing the full sample period results from columns 4 to 6 reveals the V/U ra-
tio’s superiority over the longer sample. It achieves an adjusted r-squared nearly double
that of the unemployment rate, demonstrating a stronger fit, especially when including
pandemic-era observations. Despite both measures showing significance at the 1-percent
level individually, a “horse race” comparison reveals a clear difference. The p-value for
testing the joint significance of linear, quadratic, and cubic terms is nearly zero for the
V/U ratio, while the F-statistic becomes notably insignificant for the unemployment rate.
The variation in the V/U ratio explains the surge in inflation during the pandemic years
more effectively than that in the unemployment rate.

In summary, using aggregate national time series, this study validates the caution

4The appendix presents additional results using different measures of core inflation.
5Utilizing the extended dataset by Ball, Leigh and Mishra (2022).
6Column 1 indicates the unemployment rate terms are not individually significant, but jointly they are.

This stems from collinearities.
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1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4) (5) (6)
U V/U Horse Race U V/U Horse Race

Unemp. Rate -1.24 -4.70 -6.54∗∗ 3.93
(1.71) (2.97) (3.26) (3.34)

U-squared 0.14 0.55 0.91∗ -0.58
(0.28) (0.44) (0.48) (0.48)

U-cubed -0.01 -0.02 -0.04∗ 0.03
(0.01) (0.02) (0.02) (0.02)

V/U 9.84∗∗ 21.42∗∗∗ 6.27∗∗ 2.94
(4.11) (6.01) (2.90) (4.07)

(V/U)-squared -11.54∗ -28.70∗∗∗ -6.14∗ -2.40
(6.06) (8.51) (3.50) (5.30)

(V/U)-cubed 4.73∗ 11.38∗∗∗ 2.49∗∗ 1.38
(2.76) (3.58) (1.16) (1.73)

Constant 3.71 -2.67∗∗∗ 7.53 15.57∗∗ -2.03∗∗∗ -9.61
(3.39) (0.86) (6.11) (7.15) (0.70) (7.02)

R2 0.45 0.44 0.54 0.43 0.73 0.75
R2a 0.44 0.43 0.52 0.42 0.73 0.74

H0: U terms
F-stat 15.41 5.46 7.46 1.05
P-value 0.00 0.00 0.00 0.37

H0: V/U terms
F-stat 21.93 4.76 70.44 85.51
P-value 0.00 0.00 0.00 0.00

N 140 140 140 156 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: Phillips Curve Estimation Results

Notes: Newey-West standard errors in parenthesis using a lag order of 4.
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against adopting the V/U ratio based solely on pandemic years, suggesting potential
cherry-picking. The findings reveal that V/U only shows its dominating superiority in
the full sample period, including the pandemic years. Before the pandemic, both mea-
sures are equally effective, supported by similar and high significance levels. This rein-
forces the critique that the primary evidence for the switch does not stem from a single
national time series.

3.2 Accounting for Time-Varying Natural Rates

This analysis moves from fixed to time-varying natural rates at the national level. Recog-
nizing that the natural rate of unemployment may fluctuate over time suggests that the
V/U ratio could also vary similarly. However, the Congressional Budget Office (CBO)
provides time-varying rates for unemployment but does not offer analogous metrics for
the V/U ratio. This study fills this gap by estimating time-varying natural rates for the
V/U ratio through state-space models, accounting for the non-linearity in the Phillips
curve. I estimate natural rates for both unemployment and the V/U ratio using a consis-
tent methodology to ensure a fair comparison.

The Unscented Kalman Filter. Estimating natural rates using state-space models differs
from the traditional Hodrick-Prescott (HP) filter, which assumes that the star variables
increase directly with the actual series. In contrast, Bayesian filters incorporate inflation
dynamics, thereby endogenously generating movements in the star variables. To address
the equation’s non-linearity, this study employs the Unscented Kalman Filter (UKF) for
non-linear estimation, as developed by Wan and Van Der Merwe (2000).

The UKF Framework. The UKF setup with the Phillips curve framework can be written
as a set of observation and transition equations. The observation equations are:

πt − πe
t = β0 + β1(St − S∗

t ) + β2(St − S∗
t )

2 + β3(St − S∗
t )

3 + ϵPC
t (3)

St = S∗
t + (St − S∗

t ) (4)

Same as in the aggregate level regression framework, πt represents the quarterly sea-
sonally adjusted annualized median CPI inflation rate; πe denotes the 10-year-ahead SPF
inflation expectation; St is the 4-quarter average of the slack measure as specified in pri-
mary equation (2), and S∗

t is the to-be-established time-varying natural rate from the 4-
quarter average of the slack measure. Equation 4 is used for technical identity purposes.
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The time-varying natural rates of labor market slack are estimated by combining the
observation equation, which includes inflation dynamics and slack variables in explicit
gap form, with a set of transition equations:

S∗
t = S∗

t−1 + ϵstar
t (5)

St − S∗
t = δ1(St−1 − S∗

t−1) + ϵ
gap
t . (6)

Equation 5 explicitly permits the natural rate of the slack variable St to vary over
time. Following the literature, 7 this study models the star variable as following a random
walk, where the error variance of ϵstar

t indicates the amount of time variation. Equation 6
assumes the gap variable follows an AR(1) process.

The “Variance Ratio” Restriction. Kalman filter approaches in Phillips curve models
enable simultaneous estimation of unknown parameters through maximum likelihood.
However, as highlighted in works like Staiger, Stock and Watson (1997b), practical appli-
cations often restrict the star variables’ variability by limiting the error variance in equa-
tion 5. Experiments in this study confirms that without restrictions, smoothed variables
closely follow the actual series, becoming overly variable and conflicting with the natural
rate concept. Therefore, applying a variance restriction on the star variable is necessary.

The next question concerns the appropriate level of variance restriction on the star
variable. I use the CBO’s natural rate as a benchmark for imposing this restriction. For the
sample period from 1985Q1 to 2019Q4, the variance fraction of the CBO’s natural rate to
the raw unemployment rate’s variance is about 8 − 9%. 8 When necessary, the Unscented
Kalman Filter (UKF) applies an error-variance restriction of approximately 9% for both
V/U and the unemployment rate. This adheres to both the CBO’s benchmark and the
guideline from Gordon (1997) regarding the degree of restriction: the natural rate should
neither be completely flat nor excessively variable.

Estimates. Figure 3 illustrates the estimated time-varying natural rates for the unem-
ployment rate and the V/U ratio from 1985 to the fourth quarter of 2019. It contrasts these
smoothed series with the actual series, showing the movement of these natural rates.

Furthermore, figure 4 extends this comparison to include data up to the fourth quarter

7Gordon (1997, 1998, 2011, 2013); OECD publishes natural rate estimates for many countries, detailed
in works like Boone et al. (2003); Fabiani and Mestre (2004); Gianella et al. (2008); Guichard and Rusticelli
(2011); Rusticelli (2014). Additionally, CBO outlines their labor market natural rate estimation approach in
appendix B of Shackleton (2018).

8That is, var(nairu)/var(unemp. rate) is approximately 8 to 9 percent.
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(a) U: Natural Rate vs. Actual Value

(b) V/U: Natural Rate vs. Actual Value

Figure 3: Price Inflation: UKF-Estimated Star Variables, 1985–2019Q4

of 2023. This period witnesses a notable rise in the estimated natural rate of unemploy-
ment during the pandemic. This increase is significant, as the early pandemic surge in
unemployment did not correspond with a change in inflation, indicating that the natural
rate adjustment helps the model explain such cyclical dynamics. As inflation began to
rise, an elevated natural rate alongside a low unemployment rate suggests a significantly
widened unemployment gap, indicating a tightened labor market. 9 However, even al-
lowing the natural rate of unemployment to increase, the unemployment gap does not
sufficiently explain inflation during the pandemic as table 2 later illustrates.

9This result aligns with Crump et al. (2022), who discovered that the actual natural unemployment rate
might exceed CBO’s estimates. Their research indicates the natural rate climbed to 5.9% by the end of 2021,
with an unemployment gap of −1.5%.
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(a) U: Natural Rate vs. Actual Value

(b) V/U: Natural Rate vs. Actual Value

Figure 4: Price Inflation: UKF-Estimated Star Variables, 1985–2023Q4

Moving to the estimation results, table 2 reports findings from the UKF estimation
for two sample periods. Columns 1 and 2 correspond to the pre-pandemic period, while
columns 3 and 4 present estimates from 1985 to 2023.

The aggregate analysis comprises two comparisons: explanatory power and p-values.
Starting with pre-pandemic findings, the study confirms the joint significance of V/U’s
non-linear terms, supporting the use of a cubic form to model non-linearity. The Wald
statistic reveals both the unemployment rate and V/U ratio terms are equally significant
at nearly a 0-percent level, with small differences. Both metrics exhibit similar adjusted
r-squared values, indicating comparable data fit.

Moving to the full sample period, the V/U model outperforms the unemployment
rate model, as shown by the adjusted r-squared values and the joint significance of the
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1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4)
Unemp. Rate V/U Ratio Unemp. Rate V/U Ratio

motion eq.
(S − S∗)t−1 0.99∗∗∗ 0.99∗∗∗ 0.97∗∗∗ 0.99∗∗∗

(0.02) (0.02) (0.02) (0.02)

measurement eq.
slack gap -0.31∗∗∗ 1.56∗∗∗ -0.35∗∗∗ 1.94∗∗∗

(0.05) (0.35) (0.08) (0.25)

slack gap2 -0.03 -7.21∗∗∗ 0.06∗∗∗ -0.91∗∗

(0.03) (1.11) (0.01) (0.45)

slack gap3 -0.00 9.63∗∗∗ -0.02∗∗∗ 4.44∗∗∗

(0.01) (2.92) (0.01) (0.75)

constant 0.04 0.18∗∗∗ -0.01 0.41∗∗∗

(0.05) (0.05) (0.09) (0.06)

error variances
S∗ eq. 0.00420 0.00011 0.00327 0.00048

(restricted) (restricted) (restricted) (restricted)

S − S∗ eq. 0.05∗∗∗ 0.00∗∗∗ 0.13∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.01) (0.00)

PC eq. 0.19∗∗∗ 0.17∗∗∗ 0.44∗∗∗ 0.21∗∗∗

(0.02) (0.02) (0.04) (0.03)

H0 : β2 = β3 = 0
Wald-stat 2.47 43.34 34.91 49.33
P-value (0.29) (0.00) (0.00) (0.00)

H0 : β1 = β2 = β3 = 0
Wald-stat 184.01 158.11 314.32 848.26
P-value (0.00) (0.00) (0.00) (0.00)

R2a 0.52 0.58 0.60 0.82
N 140 140 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
The error variance of the star variables is restricted to approximately (for numerical stability) 9
percent of total variance, i.e., var(star)/var(slack) ≈ 0.09.
In particular, in first subsample, var(ur∗)/var(ur) ≈ 0.09, and var((v/u)∗)/var(v/u) ≈ 0.09.
In full sample, var(ur∗)/var(ur) ≈ 0.09, and var((v/u)∗)/var(v/u) ≈ 0.09.

Table 2: Phillips Curve Estimation Results with Time-varying Natural Rates
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slack measures’ linear, quadratic, and cubic terms. Including pandemic observations
enhances the joint significance Wald statistic nearly fourfold, favoring the V/U model.
Moreover, the adjusted r-square value for the unemployment rate model suggests that
the increase in the natural rate cannot fully explain the rise in inflation during the pan-
demic years.

This study confirms that analyses using both fixed and time-varying natural rates at
the national level provide consistent outcomes, revealing a tie between both measures.
However, there is a trend in recent literature towards using regional business cycle data as
a more comprehensive source of evidence beyond just one single episode. An important
finding, discussed in the next section, is how regional analysis supports the V/U ratio’s
superiority based on broader evidence.
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4 V/U vs. U: Regional Evidence

I now turn to the regional analysis of the price Phillips curve. A central question raised
by Mavroeidis, Plagborg-Møller and Stock (2014) concerns the specification uncertainty
and limited information provided by national time-series data.

Panel data analysis offers greater variation due to the presence of multiple local busi-
ness cycles in different regions. By using data from various regions, this method over-
comes the problem of insufficient variation inherent in a single national time series, which
may be influenced by a single event.

Additionally, employing fixed effects addresses potential error correlation issues that
could arise from the response of monetary policy to the business cycle, or from expecta-
tions terms correlated with current economic conditions. 10 Assuming that these omitted
variables are functions of either time or entity fixed effects, the use of two-way fixed ef-
fects in a panel setup can absorb the natural rates of slack measures, as well as mitigate
concerns about how to measure inflation expectations. 11

Considering these reasons, the empirical Phillips curve literature has shifted towards
cross-sectional data, prompting this study to analyze the Phillips curve at the regional
level. This section presents the regional econometric specification and the results.

Regional Data. For the price Phillips curve analysis, I use data on inflation rates in the
18 largest Metropolitan Statistical Areas (MSAs). The MSA-level Job Openings and Labor
Turnover Survey (JOLTS), published as a one-time research release, provides quarterly
data from 2000 to 2019 but has not been extended by the Bureau of Labor Statistics (BLS)
to include the pandemic period. Therefore, I fit the Phillips curve using data from these
18 MSAs (and 13 MSAs for the time-varying natural rate analysis), 12 constraining the

10Single time-series data face endogeneity issues. Cost-push shocks are difficult to account for, and
monetary policy responds to the business cycle. McLeay and Tenreyro (2020) argue that directly controlling
for cost-push shocks is challenging because the primary drivers of these shocks can vary across periods.
They also point out the problem of endogeneity with monetary policy, as central banks often attempt to
optimally offset aggregate demand shocks.

11Inflation expectations, particularly those held by price and wage setters, are key driving variables in
the Phillips curve but are difficult to measure. D’Acunto, Malmendier and Weber (2022) provide a com-
prehensive review of current inflation expectation surveys, noting potential measurement errors, including
those associated with the commonly used Survey of Professional Forecasters in aggregate Phillips curve
analysis.

12In the appendix, a full list of the 18 largest areas is provided. Following the approach of Babb and
Detmeister (2017) and McLeay and Tenreyro (2020), these 18 largest areas cover approximately 30 percent
of the civilian nonfarm labor force.

For the time-varying natural rate analysis, 13 MSAs are included, omitting 5 MSAs due to their limited
data of only 6 observations.
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analysis to the pre-COVID sample period. The dependent variable is the quarterly annu-
alized Consumer Price Index (CPI) inflation rate, excluding food and energy, seasonally
adjusted using the X13 algorithm.

4.1 OLS Analysis: Fixed Natural Rates

Regional Regression Specification. For the cross-sectional panel regression of price in-
flation, I estimate a cubic equation for quarterly CPI excluding food and energy (CPIXFE)
inflation:

πit = βR
1

[
1
4

3

∑
j=0

Si,t−j

]
+ βR

2

[
1
4

3

∑
j=0

Si,t−j

]2

+ βR
3

[
1
4

3

∑
j=0

Si,t−j

]3

+ βR
4 πi,t−1 + αi + δt + ϵit,

(7)
where πit is the quarterly annualized inflation rate in region i at time t. The slack vari-
able, Si,t−j, is averaged over four quarters, similar to the aggregate Phillips curve analysis.
πi,t−1 is the lagged inflation rate. αi and δt represent entity and time fixed effects, respec-
tively, to adjust for omitted variable bias.

In this econometric analysis, employing two-way fixed effects is crucial for addressing
endogeneity. Entity fixed effects mitigate biases from variables constant over time but
varying across regions, such as productivity growth differences among different regions.
For instance, if Maryland consistently shows a different slack measure level compared to
California, entity fixed effects adjust for this. Time fixed effects control for characteristics
uniform across regions but varying over time, such as nationwide monetary policy or
long-run inflation expectations. Essentially, omitted variable bias is addressed for any
variables that can be accounted for through time or entity fixed effects.

Regional Estimates. For the period from 2000 to before the pandemic, Table 3 presents
three variations of the regional regression specification. Column 1 uses the unemploy-
ment rate, column 2 uses the V/U ratio as the slack measure, and column 3 includes both
variables in a joint regression to evaluate their effectiveness through p-value comparison.

Both slack measures perform similarly in individual regressions, showing comparable
within-R2 values and significant p-values. However, when both variables are included to-
gether in column 3, the V/U ratio demonstrates greater relative efficacy. Specifically, the
V/U ratio is significant at the 5-percent level (p-value = 0.02), while the unemployment
rate is only weakly significant at the 10-percent level (p-value = 0.08).

From the analysis in Table 3, it is evident that incorporating time and entity fixed
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CPIX: 2001Q4-2019Q4

(1) (2) (3)
U V/U Horse Race

Unemp. Rate -1.68∗∗∗ -1.45∗

(0.44) (0.82)

U-squared 0.13∗∗ 0.15∗

(0.05) (0.09)

U-cubed -0.00∗ -0.01∗

(0.00) (0.00)

V/U 9.59∗∗∗ 6.47∗∗∗

(1.36) (2.41)

(V/U)-squared -5.31∗∗∗ -4.09∗∗∗

(0.97) (1.39)

(V/U)-cubed 1.05∗∗∗ 0.85∗∗∗

(0.22) (0.28)

Lagged inf. 0.01 0.02 0.01
(0.06) (0.05) (0.05)

Time FE Yes Yes Yes
MSA FE Yes Yes Yes

R2a 0.55 0.55 0.55
R2-within 0.06 0.06 0.07

H0: U terms
F-stat 12.75 2.36
P-value 0.00 0.08

H0: V/U terms
F-stat 20.70 3.33
P-value 0.00 0.02

N 979 979 979

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: MSA, Price PC

Notes: Driscoll-Kraay standard errors in parenthesis using a lag order of 4.

20



effects, and using CPIXFE to measure price inflation, the V/U ratio demonstrates greater
identification power. It prevails in the p-value comparison even in the pre-pandemic
period.

4.2 Accounting for Time-Varying Natural Rates

Next, I extend the regional analysis to include time-varying natural rates. The main dif-
ficulty lies in estimating each region’s unique natural rate along with all the model pa-
rameters within a cubic Phillips curve framework. To address this challenge, this paper
employs the Extended Kalman Filter (EKF). The EKF uses the same state-space model but
is computationally more efficient due to log-linearization.

The Extended Kalman Filter Framework. Similar to the UKF framework, the Extended
Kalman Filter has both transition equations and observation equations.

For a single region i, the Phillips curve observation equation is as follows:

πit − πe
t = β0 + βR

1 (Si,t − S∗
i,t) + βR

2 (Si,t − S∗
i,t)

2 + βR
3 (Si,t − S∗

i,t)
3 + βR

4 (πi,t−1 − πe
t ) + ϵit,

(8)

where πit represents the quarterly annualized CPIXFE inflation rates; Si,t is the four-
quarter average of slack measures; S∗

i,t denotes the four-quarter average natural rate for
specific region i; πi,t−1 is the one-period lagged inflation, and πe

t is the contemporaneous
SPF-10 year ahead inflation expectation. 13 The identity equation is omitted for simplicity.

S∗
it = S∗

i,t−1 + ϵstar
it (9)

Sit − S∗
it = δ1(Si,t−1 − S∗

i,t−1) + ϵ
gap
it . (10)

For the transition equations (9) and (10), the setup mirrors that of the UKF framework.
The natural rates follow a random walk, and the gap adheres to an AR(1) process. The
“variance ratio” restriction is also imposed on the star variable, following the rationale
applied at the national level.

13The PC specification effectively assigns the coefficient of lagged inflation as α, and that of expected
inflation as 1 − α. This ensures that the coefficients for expected and lagged inflation sum to one. The
underlying theory implies that in a regime where everyone expects 2% inflation and the economy is in a
steady state, it should indeed produce 2% inflation.
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Estimates. Figure 5 and 6 display the estimated star variables for the first four MSAs in
the sample. Given the similarity across figures, additional representations are provided
in the appendix. These figures illustrate the time-path of the star variables, with estimates
from the EKF appearing reasonable, as the natural rate of unemployment and V/U ratios
are within plausible ranges.

(a) Natural Rate of V/U - Atlanta (b) Natural Rate of V/U - Chicago

(c) Natural Rate of V/U - Dallas (d) Natural Rate of V/U - Detroit

Figure 5: Natural Rate vs. Actual V/U Values for MSAs: Atlanta, Chicago, Dallas, Detroit

The model incorporates a cubic Phillips curve observation equation that enables eco-
nomic slack to impact inflation. The corresponding fitted inflation figures, which also
appear reasonable, are included in the appendix.
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(a) Natural Rate of U - Atlanta (b) Natural Rate of U - Chicago

(c) Natural Rate of U - Dallas (d) Natural Rate of U - Detroit

Figure 6: Natural Rate vs. Actual U Values for MSAs: Atlanta, Chicago, Dallas, Detroit

Turning to the estimated Phillips curve coefficients in the EKF framework, table 4
presents the maximum likelihood estimates. Although the AR(1) coefficient appears high,
these estimates yield plausible natural rate series. This may stem from the necessity of
imposing variance restrictions on the star variable, suggesting that while the natural rate
should not move very much, the gap has to persist a bit. Overall, the estimates generate
reasonable series for natural rates.
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2001Q4-2019Q4, Extended Kalman Filter

(1) (2)
Unemp. rate model V/U model

motion eq.
(S − S∗)t−1 0.99∗∗∗ 0.99∗∗∗

(0.00) (0.00)

measurement eq.
slack gap -0.38∗∗∗ 1.27∗∗∗

(0.06) (0.34)

slack gap2 0.04 -2.83∗∗∗

(0.03) (0.56)

slack gap3 -0.00 1.59∗

(0.97) (0.00)

lagged inf. -0.21∗∗∗ -0.21∗∗∗

(0.03) (0.03)

constant -0.12 0.22∗∗

(0.10) (0.09)

error variances
S∗ eq. 0.0105 0.0004

(restricted) (restricted)

S − S∗ eq. 0.09∗∗∗ 0.00∗∗∗

(0.00) (0.00)

PC eq. 4.28∗∗∗ 4.22∗∗∗

(0.18) (0.20)

H0 : β2 = β3 = 0
Wald-stat 2.29 44.44
P-value (0.32) (0.00)

H0 : β1 = β2 = β3 = 0
Wald-stat 72.44 173.77
P-value (0.00) (0.00)

Vuong-stat -33.37
P-value 0.00

R2a 0.12 0.13
R2-within 0.12 0.13
Log likelihood -1467.66 192.85
N 949 949

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
The Vuong test statistic: We report Vuong’s 2-step test for overlapping models, testing
the unemployment rate model against V/U model.
Step 1 Test Result: p-value for variance test is 0.00, where first stage test statistic is
2476.01, and 95-percentile of weighted sums of chi-square is 6.48.
The Wald test statistic: We report Wald test statistic for the joint significance of linear,
quadratic, and cubic terms, and thus W ∼ χ2

q=3 .

Table 4: EKF, Price PC, restriction on star variable error-variance only
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Analyzing the fit, the within-R2 for the V/U ratio is slightly higher. Both measures
show significant nonlinearity, as evidenced by the Wald test, aligning with past studies.
All slack terms are jointly significant, with V/U showing a notably higher statistic.

For model selection within the Kalman Filter framework, log likelihood values for
both models enable a comprehensive model selection test, enriching the analysis beyond
mere p-value comparison. Vuong (1989) proposes a test based on log likelihoods and
provides a distribution theory for the log likelihood-based test statistic, similar to the LR
statistic.

Large positive values indicate a preference for the unemployment rate model, while
large negative values favor the V/U model. This test determines if one model is closer to
reality, with negative significant results favoring the V/U model. Given the large sample
size in the regional analysis, the Vuong test yields a significant negative result, indicating
the V/U model’s superiority.

To examine the Phillips curve coefficients more closely, I illustrate the function’s shape
using the estimated coefficients. Figure 7 plots the cubic functions for both the unem-
ployment rate and V/U ratio, including standard error bands. These curves align with
expectations: downward for the unemployment rate and upward for the V/U ratio.

(a) Based on U PC Estimates (b) Based on V/U PC Estimates

Figure 7: Cubic Function, 1985-2019Q4
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5 Wage Inflation

This section delves into the wage inflation Phillips curve analysis, primarily examining
the pre-pandemic period with a focus on fixed natural rates analysis, with further discus-
sions deferred to the appendix.

Price inflation, crucial for consumers and central banks, plays a significant role in
monetary policy. However, wage inflation also holds significance, affecting firm costs
and, consequently, price levels. Many empirical and theoretical work has been investi-
gating the pass-through effect from wages to prices.

5.1 Aggregate Analysis

OLS Regression Specification. To more thoroughly investigate wage inflation behavior,
I apply the same cubic analysis used in the price Phillips curve, but focusing on the wage
inflation gap instead of the median price inflation gap. The regression model incorporates
linear, quadratic, and cubic functions of the slack variable, and, consistent with prior
research on wage Phillips curve, includes a term for trend productivity growth.

The econometric model is as follows:

πt − πe
t = β0 + β1St + β2S2

t + β3S3
t + β4LaborProductivity + ϵt. (11)

In this analysis, the inflation measure is the growth rate of the Employment Cost Index
(ECI), which accounts for shifts in the composition of the labor force. The labor produc-
tivity term is measured as follows. I take the logarithm of the output per hour in the
non-farm sector. Then, I apply the Hodrick-Prescott filter with a smoothing parameter of
16,000 to extract the trend component. Productivity growth is calculated as 400 times the
quarterly change in this trend component. The definitions of the other variables remain
consistent with earlier price behavior analyses.

Estimates. For both sample periods, from 1985 to 2019 and extending to 2022, table 5
indicates consistent insights with those found in the price Phillips curve analysis.

In columns 1 and 2, for the pre-pandemic sample, both indicators fit the data equally
well in a cubic relationship. Individual regressions of the wage inflation gap on the cubic
functions of the slack measures respectively yield p-values indicating nearly 0-percent
significance. Column 3’s p-value “horse race” shows both measures are equally signifi-
cant. With both achieving nearly 0-percent statistical significance, a tie is a more reason-
able conclusion than declaring a winner.
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1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4) (5) (6)
U V/U Horse Race U V/U Horse Race

Unemp. Rate -0.78 -4.39∗∗ -2.80 1.38
(1.41) (1.77) (1.80) (2.77)

U-squared -0.01 0.49∗ 0.29 -0.24
(0.22) (0.26) (0.29) (0.38)

U-cubed 0.00 -0.02 -0.01 0.01
(0.01) (0.01) (0.01) (0.02)

V/U -1.15 8.82 1.92 5.99
(2.22) (5.85) (1.78) (4.22)

(V/U)-squared 6.02∗ -9.30 0.55 -3.46
(3.49) (7.60) (2.28) (5.05)

(V/U)-cubed -3.33∗∗ 2.50 -0.30 0.92
(1.65) (3.15) (0.79) (1.66)

Labor Prod. 0.30∗∗∗ 0.59∗∗∗ 0.34∗∗∗ 0.15 0.54∗∗∗ 0.60∗∗∗

(0.08) (0.09) (0.12) (0.15) (0.11) (0.15)

Constant 3.44 -1.80∗∗∗ 9.11∗∗ 8.21∗∗ -2.18∗∗∗ -6.18
(2.86) (0.33) (3.93) (3.51) (0.37) (6.55)

R2 0.54 0.51 0.56 0.45 0.55 0.57
R2a 0.52 0.50 0.54 0.43 0.54 0.55

H0: U terms
F-stat 57.84 9.54 20.44 2.04
P-value 0.00 0.00 0.00 0.11

H0: V/U terms
F-stat 107.68 5.49 172.32 11.98
P-value 0.00 0.00 0.00 0.00

N 140 140 140 156 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: National, Wage PC

Notes: OLS and Newey-West standard errors in parenthesis using a lag order of 4.
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For the full sample (column 4 though 6), the findings mirror those from the price
analysis: during the pandemic period, the unemployment rate is outperformed by the
V/U ratio. In column 5, the V/U ratio model shows moderately higher explanatory
power, with an R2 of 0.54 compared to 0.43 for the unemployment rate model reported
in column 4. In the "horse race" comparison illustrated in column 6, the V/U model has
a p-value close to zero, while the unemployment rate model has a p-value of 0.11. This
result indicates that the V/U ratio has higher relative efficacy.

Accounting for Time-Varying Natural Rates. I also consider the case of a time-varying
natural rate for the wage Phillips curve, with results presented in the appendix. In this
analysis, I employ the UKF framework to jointly estimate natural rates within the cubic
specification of the wage Phillips curve while controlling for productivity growth. Over-
all, the UKF estimates corroborate the findings based on assuming a fixed natural rate.
They indicate that in the pre-pandemic sample, both slack measures perform equally
well. However, when the pandemic period observations are included, the V/U ratio
outperforms the unemployment rate.

5.2 Regional Analysis

At the regional level, I use quarterly wage inflation rates derived from mean weekly
wages reported by the Quarterly Census of Employment and Wages (QCEW) program.
To analyze the data, I generate a residualized scatter plot, shown in Figure 8.

The vertical axis displays residuals from regressing quarterly annualized wage infla-
tion against state dummies, time dummies, and the lagged inflation term. The horizontal
axis shows residuals from regressing the unemployment rate or the V/U ratio against
state, time dummies, and the lagged inflation term. I then plot the residualized wage
inflation against the residualized slack terms. The data appear somewhat noisy.

Panel Regression Estimates. Table 6 reports the pre-pandemic estimates in columns 1
through 3 and the full sample estimates in columns 4 through 6. The within-R2 values
are similar across the two slack measures, but the F-statistics for the joint significance of
the slack terms are higher for the V/U ratio model in the pre-pandemic period. Column
3 shows that the V/U ratio is jointly significant at the 5-percent level, while the unem-
ployment rate is not statistically significant. When the analysis is extended to include the
pandemic period observations, neither variable is statistically significant in the “horse
race.”

28



2001Q3-2019Q4 2001Q3-2022Q4

(1) (2) (3) (4) (5) (6)
U V/U Horse Race U V/U Horse Race

Unemp. Rate -0.63 -0.39 -1.13∗∗ -0.48
(0.49) (1.01) (0.51) (0.82)

U-squared 0.03 0.07 0.09 0.05
(0.07) (0.11) (0.08) (0.10)

U-cubed -0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00)

V/U 7.05∗∗ 8.10∗ 5.62∗∗ 4.66
(3.27) (4.71) (2.20) (4.28)

(V/U)-squared -3.81 -4.57 -2.70∗ -2.40
(2.57) (3.21) (1.54) (2.33)

(V/U)-cubed 0.59 0.75 0.47 0.43
(0.60) (0.72) (0.29) (0.41)

Lagged Inf. -0.36∗∗∗ -0.36∗∗∗ -0.36∗∗∗ -0.33∗∗∗ -0.33∗∗∗ -0.33∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Time FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes

R2 0.57 0.58 0.58 0.63 0.63 0.63
R2a 0.56 0.56 0.56 0.62 0.62 0.62
R2-within 0.13 0.13 0.13 0.11 0.11 0.11

H0: U terms
F-stat 2.45 0.26 3.99 0.11
P-value 0.07 0.85 0.01 0.95

H0: V/U terms
F-stat 4.38 2.84 5.88 1.09
P-value 0.01 0.04 0.00 0.36

N 3774 3774 3774 4386 4386 4386

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: State, Wage PC

Notes: Driscoll-Kraay standard errors in parenthesis using a lag order of 4.
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(a) Unemployment Rate

(b) V/U Ratio

Figure 8: Residualized Scatter Plots, State
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6 A Simple Model of V/U and Inflation

This section illustrates why the V/U ratio is more appropriate for representing labor mar-
ket tightness in the Phillips curve than the unemployment rate. To investigate short-run
fluctuations around the long-run equilibrium, this section will adopt an approach differ-
ent from the standard Diamond-Mortensen-Pissarides (DMP) model.

The canonical DMP model focuses on long-run determinants of employment and
wages, considering factors such as the cost of creating vacancies and various characteris-
tics of workers, which determine vacancy creation and wage conditions. Departing from
the canonical model, I follow the tradition in short-run macroeconomics and assume that
the demand determines the number of jobs J that firms would like to fill, thus eliminating
one market-clearing condition for the supply of vacancies. This simplification allows the
model to focus directly on how the economy behaves when J fluctuates exogenously, as
opposed to being chosen given the number of vacancies.

Subsequently, the model-derived real wage is incorporated into a Phillips curve, draw-
ing on the framework from Blanchard and Katz (1996) and Blanchard and Bernanke
(2023), to present a straightforward inflation model by treating prices as a markup over
wages. Furthermore, in the presence of shocks to the Beveridge curve, the curve can shift,
making the relationship between inflation and U unstable, and the V/U ratio is a more
accurate gauge.

6.1 V/U and the Wage Function

The Economy. Time is continuous and infinite. However, as the model intends to solve
for a stationary equilibrium, the time subscript is dropped for simplicity. The economy
consists of a fixed labor force, L, which is split between employed workers, E, and unem-
ployed workers, U, such that

L = E + U.

The model accounts for short-term demand fluctuations. The exogenous variable J
captures the number of jobs available in the economy, and J can be thought of as the
total demand in the economy, in line with the ideas presented in Blanchard, Domash
and Summers (2022). The exogenous changes in J then captures the change in aggregate
demand for labor. 14 The economy can have one job for every person in the labor force,
more jobs than the labor force, or fewer jobs than the labor force. 15

14In this economy, J jobs are then matched with L workers.
15Blanchard, Domash and Summers (2022) assumes that increase in aggregate activity causes firms to

31



At any moment, there are E existing worker-job matches, with V vacancies posted by
firms, and U amount of unemployed people. The model then has

J = E + V,

where a job can either be filled by a successful match or remain unfilled as a vacancy.
Therefore, J = E + V = L − U + V.

The E existing worker-job matches are destroyed at an exogenous rate s, at which the
workers separated from the job become unemployed and the job becomes vacant.

Workers and Firms. Agents have infinite lifespans. Workers are risk-neutral and iden-
tical, and thus can be matched with any job. They have the same marginal productivity,
discounting the future at rate r. Employed workers earn a wage w, which is also the
current utility when employed. For simplicity, unemployed workers receive no flow div-
idends, with unemployment benefits set to 0.

Similarly, firms have linear utility. 16 An employed worker generates a flow of output
y, resulting in a per-period profit of y − w for the firm. For simplicity, firms do not face a
vacancy cost of c when searching for workers.

Firms and workers match through a function H = m(U, V), utilizing Cobb-Douglas
production technology. Additionally, there is a transition process between being em-
ployed and unemployed. The hiring process at any given time follows a Cobb-Douglas
production model:

H = am(U, V) = aUγV1−γ,

where a > 0 and γ ∈ (0, 1). At any moment, H represents the amount of job hiring. The
model posits an equal probability of matching for each worker and firm. Other things
being equal, an increase in jobs, driven by firms’ desire to meet rising aggregate demand,
results in more new hires given

H = am(U, J − L + U).

More jobs mean more vacancies looking to fill positions, affecting employment (E) and
unemployment (U) rates while keeping the labor force (L) constant.

After a worker and a firm form a match, it is exposed a stochastic labor turnover

post more vacancies. That is, higher aggregate demand leads to greater number of vacancies, and lower
level of unemployment.

16They are not necessarily homogeneous though. Given the model accounts for short run demand fluc-
tuations, firms may possess some market power, potentially allowing them to charge a markup.
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process characterized by an exogenous separation rate s, the Poisson arrival rate. Wages
will result from Nash bargaining mechanism between the worker and the firm, where the
worker’s bargaining power is denoted by β ∈ [0, 1].

Labor Market Tightness and the Beveridge Curve. Labor market tightness is measured
by θ = V/U, where V and U represent aggregate measures of unmatched, posted vacan-
cies and unemployed workers, respectively. This paper’s approach to modeling labor
market tightness aligns closely with the innovative aspect of the DMP framework. The
primary distinction lies in how the two key hazard rates are influenced by exogenous
variables L and J.

The number of hires H, labor market tightness θ, and unemployed U are related
through the the hazard rate of job finding:

job finding rate =
H
U

=
a · m(U, V)

U
= aUγ−1V1−γ = aθ1−γ.

The daily probability of a searcher finding a job rises with increased labor market
tightness, particularly when vacancies expand due to an exogenous rise in labor demand.

The number of hires H, labor market tightness θ, and vacancies V are linked through
the hazard rate of job filling:

job filling rate =
H
V

=
a · m(U, V)

V
= aUγV−γ = aθ−γ.

For the employer, the probability of filling a vacancy decreases, since as demand for la-
bor increases, it is more challenging to fill vacancies, assuming the labor force remains
constant.

Next, I calculate a steady-state level of vacancies as a function of the unemployment
rate. The inverse relationship between vacancies and the unemployment rate defines the
Beveridge curve. Traditionally, the unemployment rate is expressed as U/L, while the
vacancy rate is typically V/J. For clarity, this study re-defines both rates relative to the
labor force, L, using lowercase v and u to denote the vacancy and unemployment rates,
respectively. Hence, θ can be defined as v/u.

At any given time, job separations amount to sE, while the number of job creations
equals the job finding rate multiplied by U, or aθ1−γU. In equilibrium, the flow from un-
employment to employment equates the outflow from employment, the Beveridge curve
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relationship is explicitly:

s(E/L) = job finding rate · (U/L)

u =
s

aθ1−γ + s

v = a−
1

1−γ · [s(1 − u)]
1

1−γ · u− γ
1−γ . (12)

Search and Matching: Wage Determination. This section derives the wage as a func-
tion of labor market tightness, utilizing the Nash bargaining model of wage determina-
tion within the DMP framework. In this simplified model, all unemployed workers ac-
tively search for jobs without any job-to-job transitions. A match between a worker and a
firm only ends when a job destruction shock occurs.

Although the model focuses on short-run dynamics, the subsequent derivation is a
steady-state analysis that assumes rapid out-of-steady adjustments. This assumption is
consistent with the observations of Blanchard, Domash and Summers (2022), who argue
that adjustment dynamics are typically very fast, occurring within a few months at most.
If the adjustment process is sufficiently quick, it is a reasonable approximation to assume
that the economy is always in a steady state.

I examine workers’ expected utility in different states: employed and unemployed. To
find the steady state of the model, the value functions for workers in employment state,
VE, and unemployment state, VU, meet the following Bellman equations:

rVE = w + s
[
VU − VE

]
(13)

rVU = aθ1−γ
[
VE − VU

]
(14)

The expected present discounted value of employing a worker for firms is represented
as V J , while the expected present discounted value for unmatched firms with a vacancy
is VV . The Bellman equations for firms are as follows:

rVJ = y − w + s
[
VV − VJ

]
(15)

rVV = aθ−γ
[
VJ − VV

]
. (16)

A notable distinction between the canonical model and this paper’s model is the ab-
sence of imposing a free-entry condition, meaning the value of a vacancy does not nec-
essarily equate to zero. In the canonical model, firms are presumed to be competitive,
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resulting in vacancies having a value of zero at steady state.
However, in this model, particularly in the short term, the number of J is influenced by

demand, and it is not essential to assume that firms are perfectly competitive. The firm’s
output is determined by demand, allowing it to produce and hire additional workers up
to the limit set by aggregate demand. Essentially, firms aim to maximize sales, but their
actual demand is capped at J.

For context, imagine each worker produces one unit of output, and the economy
demands ten units. Consequently, firms aim to hire ten workers, and this requirement
changes exogenously. Creating additional vacancies or hiring more workers would serve
no purpose for firms if they cannot sell the extra output.

Solving the system of equations yields the following surplus values for workers and
firms:

VE − VU =
w

(r + s + aθ1−γ)
(17)

VJ − VV =
y − w

(r + s + aθ−γ)
(18)

This paper then derives the wage function relative to labor market tightness, based
on the Nash bargaining model of wage determination within the DMP framework. The
optimization problem is formulated as:

max
w

(
VE − VU

)β (
VJ − VV

)1−β
,

where β represents a constant coefficient that measures bargaining power, independent
of both parties’ threat point values. 17

Assuming workers and firms are risk-neutral with linear utility, this paper employs
a surplus sharing solution to address the Nash bargaining problem, following Rogerson,
Shimer and Wright (2005). Linear utility allows for transferable utility, enabling surplus
to be transferred between workers and firms on a one-to-one basis in either direction.
Hence, the Nash-bargained wage in a model with transferable utility is given by:

VE − VU = β
(

VE − VU + VJ − VV
)

w =
β
(
r + s + aθ1−γ

)
(1 − β) (r + s + aθ−γ) + β (r + s + aθ1−γ)

· y, (19)

17The worker’s outside option is to remain unemployed, and the firm’s outside option is to post a va-
cancy.
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where the wage is determined by labor market tightness θ. 18

The initial segment of the model focuses on how wages respond to changes in labor
market conditions. If any of the exogenous variables change, for example, an increase in
J, the number of available jobs, it leads to more hires for a given unemployment level and
an increase in θ, which subsequently raises w.

The subsequent part of the model aims to integrate the real Nash-bargained wage into
the wage and price Phillips curve.

6.2 V/U and the Phillips Curve

The first part of the model relates the exogenous changes in labor market tightness to the
Nash-bargain wage, and the second part of the model links the real wage into the reduced
form Phillips curves following the wage-price process in Blanchard and Katz (1996) and
Blanchard and Bernanke (2023).

Wage Phillips Curve. First, the wage equation assumes that the nominal wage depends
on price expectations for quarter t and a target real wage w∗. The target real wage is a
weighted average of the Nash-bargained real wage, which is derived from the model as
a function of labor market slack, and the realized real wage from the previous quarter, to
account for inertia or slow adjustments in real wages.

The framework can be written as a system of equations:

wnominal
t = pe

t + w∗
t , where w∗

t denotes target real wage (20)

w∗
t = α · wmodel

t (θ) + (1 − α) ·
(

wnominal
t−1 − pt−1

)
(21)

pt = wnominal
t + zp

t (22)

The last equation (22) implies that, in this simplified world, prices are essentially a markup
over wages.

Labor market tightness plays a critical role in wage bargaining, with labor market
conditions determining the real wage workers receive from surplus sharing. The model-
determined wage then influences w∗

t through a coefficient α, which measures the extent
to which the Nash-bargain wage translates into the target real wage.

By defining the nominal wage from equation (20) and incorporating w∗
t from equation

(21), along with using equation (22) for the real wage, the reduced-form nominal wage

18The appendix demonstrates that with β positive and between 0 and 1, θ > 0, and under the constant
returns to scale (CRS) assumption that (1 − γ) > 0, the wage function increases with θ.
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Phillips curve is derived as follows: 19

wnominal
t = pe

t + w∗
t (23)

∆wnominal
t = πe

t + αwmodel
t (θ) + αzp

t−1. (24)

I define the inflation expectation for this period as ∆pe
t = pe

t − pt−1, representing the
expected price level for this period minus the price level observed in the last period. It
stays a variable to be measured, and I do not take a stance on how inflation expectation
forms. For simplicity, I also ignore a shock term that might influence wage growth.

Price Phillips Curve. Transitioning from wages to prices, the model assumes that price
is a markup over wages, suggesting a direct one-to-one impact from wages on prices:

pt = wnominal
t + zp

t , (25)

and thus price growth, defined as the first difference, is

pt − pt−1 = (wnominal
t − wnominal

t−1 ) + (zp
t − zp

t−1) (26)

∆pt = ∆wnominal
t + ∆zp

t (27)

∆pt = πe
t + αwmodel

t (θ) + ϵ
p
t . (28)

Equation (28) outlines a standard expectations-augmented reduced form of the price
Phillips curve, where the error term

ϵ
p
t = zp

t − (1 − α)zp
t−1

follows an MA(1) process.
Equation (28) hints at why the relationship between the unemployment rate and infla-

tion can become unstable during certain periods. The Beveridge curve can be rewritten
as

u =
s

aθ1−γ + s
.

If matching efficiency a and the separation rate s are constant, there is a one-to-one rela-

19Note that α · wmodel
t in the cubic empirical specification will be

αwmodel
t = α

(
β1Slackt + β2Slack2

t + β3Slack3
t

)
.
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tionship between the unemployment rate u and labor market tightness θ. However, when
the Beveridge curve shifts due to changes in a or s, the same unemployment rate u can
correspond to different vacancy rates v and labor market tightness θ. Connecting this to
the Phillips curve, these shocks to a and s cause the relationship between inflation and
unemployment to become unstable.

Alternatively, consider the following log-linearization around steady-state values of u
and v, where tilde variables represent percentage deviations as the economy adjusts to a
different Beveridge curve. The detailed derivation is provided in Appendix D.2.3:

v = a−
1

1−γ · [s(1 − u)]
1

1−γ · u− γ
1−γ (29)

ṽ = − 1
1 − γ

ã +
1

1 − γ
s̃ − 1

1 − γ

u
1 − u

ũ − γ

1 − γ
ũ (30)

θ̃ = ṽ − ũ. (31)

Without shocks to the matching efficiency a or the separation rate s, θ̃ depends solely on
ũ. However, if there are shocks to a and s, the relationship between ũ and ṽ changes,
making the relationship between inflation and unemployment unstable.

6.3 Observed Shifts in the Beveridge Curve

Figure 9: Historic Beveridge Curves, 2000Q1-2022Q4

To show the empirical relevance of the above shocks to the Beveridge curve, the fol-
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lowing examines how the Beveridge curve behaved in the last 20 years in the United
States. Figure 9 plots the job openings rate against unemployment rates from 2000 to
2022, with different markers and colors denoting various periods. It appears that there
are three different periods, and it was stable till the 2009, and then it shifted out. Then,
after the great recession, it shifted out again during the pandemic.

The model explains these shifts as resulting from changes in the matching efficiency
parameter a and the separation rate s. An increase in a improves hiring at a given level
of unemployment, lowering the unemployment rate for any fixed number of vacancies,
thus shifting the Beveridge curve inward. Conversely, an increase in s shifts the Beveridge
curve outward, similar to the effect of a decrease in a. I will then examine how the values
of a and s may have changed.

To estimate the job separation rate, I follow the approach of Shimer (2005). Let Ut

denote the number of unemployed workers at time t (where t refers to a monthly fre-
quency) and let Us

t represent the number of short-term unemployed workers. Assuming
all unemployed workers find a job with probability ft and none leave the labor force, the
unemployment level at time t + 1 is the sum of unemployed workers at time t who did
not find a job and the newly unemployed at time t + 1:

Ut+1 = Ut · (1 − ft) + Us
t+1.

From this equation, the job-finding rate ft can be calculated.
For the job separation rate, Shimer (2005) shows that the number of short-term unem-

ployed workers at time t + 1 is approximately:

Us
t+1 = stEt ·

(
1 − 1

2
ft

)
,

where Et is the employment level at time t. The term
(

1 − 1
2 ft

)
accounts for the fact that,

on average, a worker who loses the job has on average, half a month to find a new job
before being recorded as unemployed (Shimer, 2005). Solving for the job separation rate
st from the above equations gives:

st =
Us

t+1

Et

(
1 − 1

2 ft

) ,

and st is later converted to a quarterly frequency.
Since the Beveridge curve appears stable within each period, I assume a constant a
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for each period and estimate its value across different periods. Given the measures of s,
u, and v, I estimate a using the Beveridge curve relationship in equation (29). Following
the identified range for the elasticity with respect to the unemployment rate in Petrongolo
and Pissarides (2001), 20 I set γ to 0.5. For each period, I estimate a by minimizing an error
function. This error function is defined as the sum of squared errors between the observed
vacancies and the predicted vacancies, where s represents the average separation rate for
each period.

Table 7 reports the values for the three periods during which the Beveridge curve ap-
pears to be stable. It shows that the first outward shift in the Beveridge curve, around
the 2010s, from the first period to the second period, was primarily due to a sharp de-
cline in matching efficiency. Although this decline in a could have caused an even more
significant shift, its impact was mitigated by a decrease in the job separation rate.

During the COVID era, the job separation rate increased, while matching efficiency
continued to decline. These factors together led to a more salient outward shift, as they
exacerbated each other’s effects. 21

Period Estimated Value a Separation Rate s

2000Q1-2009Q4 1.809 0.072
2010Q1-2019Q4 1.284 0.057
2020Q1-2022Q4 1.092 0.061

Table 7: Matching Efficiency and Separation Rate by Sample Period

Notes: The values reported in the table represent the estimated matching efficiencies a and the average
separation rates for each period.

Recall that in 2021, the labor market was characterized by unemployment rates that
were not particularly low but elevated values of V/U and a large, positive inflation gap,
as shown in Figures 1 and 2. This observation is consistent with an outward shift in the
Beveridge curve. For a constant unemployment U, there was a higher vacancy V, and
thus a higher V/U. Therefore, the shift in the Beveridge curve during this period is one

20Petrongolo and Pissarides (2001) identified an empirical elasticity range for unemployment between
0.5 and 0.7.

21In this model framework, the shift can happen due to shocks to separation rate or matching efficiency.
Recent studies (Barlevy et al., 2024; Blanchard, Domash and Summers, 2022) have explored underlying
reasons for these shifts, identifying causes such as inflow rate changes and shocks to aggregate activity.

Blanchard, Domash and Summers (2022) conducts a similar analysis using different methodology. They
develop a time-series for matching efficiency as a = h/uαv1−α, and variations in reallocation are calculated
with h representing the ratio of gross hires to the labor force with α set at 0.4, spanning from January 2019
to April 2022.
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of the key factors explaining why V/U suddenly began to behave differently from the
unemployment rate, with the latter exhibiting an unstable relationship with inflation.

7 Conclusion

Previous literature has long used the unemployment rate as the go-to metric of labor mar-
ket slack. However, the unusual combination of highly elevated inflation during the pan-
demic years, along with not particularly low unemployment rates, has sparked renewed
debate on the right slack measure in the Phillips curve relationship.

Many recent studies based on national time-series data have found that the V/U ratio
outperforms the unemployment rate in explaining inflation dynamics. Yet, Şahin (2022)
criticizes that the divergence between the two measures during the COVID period was
merely one episode, and changing the slack measure based on that single event can be
dubious. This study contributes additional evidence that the V/U ratio is a more reliable
measure of labor market slack than the unemployment rate, even in periods predating
the pandemic years, using regional data.

First, I extend previous empirical work to include a time-varying natural rate in state-
space models for both V/U and U. I also assume that inflation is a cubic function of
the slack measure. With these extensions, I find that the two measures explain inflation
dynamics equally well on national time-series data from the pre-pandemic periods. This
finding confirms the critique that the V/U ratio’s superiority may be specific to the pan-
demic period.

Second, this study leverages regional data. National data offer only a single episode to
compare the two measures, but regional data provide more observations, effectively of-
fering multiple episodes of evidence. Based on the regional data, this study finds that the
V/U ratio outperforms the unemployment rate in the cubic specification of the Phillips
curve, assuming a constant natural rate and incorporating two-way fixed effects. In an
Extended Kalman Filter framework, I jointly estimate the natural rates of the two slack
measures along with the Phillips curve. This approach also confirms the superiority of
V/U even before the COVID period.

The paper then presents a simple framework to explain why V/U appears in the
Phillips curve. As the labor market becomes tighter, workers’ bargaining power increases,
pushing up real wages. By incorporating this into a simple wage-price determination
process, the resulting model yields an expectations-augmented Phillips curve with V/U
included. It also shows that V/U matters because the Beveridge curve does not always
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remain in one place. It can shift permanently, and when it does, the same U can corre-
spond to different V values; U alone cannot capture this information.

This work adds evidence supporting the V/U ratio as a more reliable measure of la-
bor market slack, and it should play a larger role in economic forecasting and monetary
policy. It also intuitively shows that shifts in the Beveridge curve are crucial for the un-
stable relationship between unemployment (U) and inflation. However, more research is
needed to understand what determines the underlying parameters behind these shifts,
such as shocks to matching efficiency and separation rates.
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APPENDIX

A Appendix: Aggregate Analysis

1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4)
U V/U U V/U

Unemp. Rate -1.24 -6.54∗∗

(1.71) (3.26)

U-squared 0.14 0.91∗

(0.28) (0.48)

U-cubed -0.01 -0.04∗

(0.01) (0.02)

V/U 9.84∗∗ 6.27∗∗

(4.11) (2.90)

(V/U)-squared -11.54∗ -6.14∗

(6.06) (3.50)

(V/U)-cubed 4.73∗ 2.49∗∗

(2.76) (1.16)

Constant 3.71 -2.67∗∗∗ 15.57∗∗ -2.03∗∗∗

(3.39) (0.86) (7.15) (0.70)

R2 0.45 0.44 0.43 0.73
R2a 0.44 0.43 0.42 0.73

H0: U Non-linear terms
F-stat 0.29 1.88
P-value 0.75 0.16

H0: V/U Non-linear terms
F-stat 2.91 12.17
P-value 0.06 0.00

N 140 140 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Test for Non-Linearity in the Price Phillips Curve

The regression table presents the results of testing for non-linearity in the price Phillips
curve. The null hypothesis is that the non-linear terms are not significant. The findings
indicate that the unemployment rate has a linear effect on price inflation. In contrast,
the vacancy-to-unemployment ratio (V/U) exhibits borderline non-linearity in the pre-
pandemic sample and is significantly non-linear in the full sample, with a p-value ap-
proaching zero.
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1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4) (5) (6)
U V/U Horse Race U V/U Horse Race

Unemp. Rate 0.43 -1.44 -3.62 9.15∗

(1.91) (3.59) (2.89) (4.65)

U-squared -0.12 0.10 0.48 -1.30∗∗

(0.31) (0.51) (0.44) (0.66)

U-cubed 0.01 0.00 -0.02 0.06∗

(0.02) (0.02) (0.02) (0.03)

V/U 4.73 13.54 2.59 -1.86
(4.70) (8.51) (4.06) (5.41)

(V/U)-squared -4.61 -18.05 -1.88 4.61
(6.96) (12.17) (5.26) (7.27)

(V/U)-cubed 1.64 7.20 0.99 -1.09
(3.17) (5.09) (1.79) (2.40)

Constant -0.18 -1.73∗ 1.42 8.96 -1.31 -21.25∗∗

(3.79) (0.97) (7.39) (6.20) (0.88) (10.03)

R2 0.20 0.19 0.24 0.20 0.48 0.55
R2a 0.18 0.17 0.20 0.18 0.47 0.54

H0: U terms
F-stat 7.47 1.31 3.55 1.32
P-value 0.00 0.27 0.02 0.27

H0: V/U terms
F-stat 7.26 1.07 16.72 26.29
P-value 0.00 0.36 0.00 0.00

N 140 140 140 156 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Price Phillips Curve: 16% Trimmed Mean CPI

In this regression specification, the weighted median inflation rate is replaced with
the Cleveland Fed’s 16% trimmed mean inflation. The results are consistent with the
baseline findings using the weighted median inflation. In the pre-pandemic sample, both
measures are significant at nearly the 0% level and exhibit similar R-squared values. In
the “horse race” comparison, the two measures do not outperform each other in terms
of p-values. In the full sample, the model using the V/U ratio as the slack measure
outperforms the model with the unemployment rate in terms of explanatory power (0.18
vs. 0.47). Additionally, V/U is significant with a p-value approaching zero, whereas the
unemployment rate is not significant in column 6.
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1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4) (5) (6)
U V/U Horse Race U V/U Horse Race

Unemp. Rate -2.04 -2.03 -6.49∗∗ 4.60
(1.95) (3.05) (2.73) (4.48)

U-squared 0.32 0.34 0.99∗∗ -0.55
(0.30) (0.44) (0.41) (0.61)

U-cubed -0.02 -0.02 -0.05∗∗ 0.02
(0.01) (0.02) (0.02) (0.03)

V/U 4.93 7.16 4.26 2.56
(3.83) (5.49) (3.57) (5.05)

(V/U)-squared -4.37 -5.63 -3.88 0.55
(5.94) (7.63) (4.84) (7.18)

(V/U)-cubed 1.25 1.31 1.57 -0.06
(2.81) (3.22) (1.70) (2.45)

Constant 4.14 -1.78∗∗ 0.94 13.86∗∗ -1.62∗∗ -14.04
(4.01) (0.75) (6.54) (5.83) (0.74) (10.03)

R2 0.14 0.20 0.24 0.14 0.35 0.43
R2a 0.12 0.19 0.20 0.12 0.34 0.41

H0: U terms
F-stat 5.87 1.79 6.20 1.39
P-value 0.00 0.15 0.00 0.25

H0: V/U terms
F-stat 7.83 3.89 32.00 44.57
P-value 0.00 0.01 0.00 0.00

N 140 140 140 156 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Price Phillips Curve: CPI Excluding Food and Energy (CPIXFE)

Using CPIXFE inflation, the V/U ratio outperforms the unemployment rate in the pre-
pandemic sample in the “horse race” comparison. It also performs better in the full sam-
ple in terms of statistical significance and explanatory power. However, the R-squared of
the pre-pandemic model fitted with the unemployment rate is lower than that of the base-
line model using the weighted median, and that of the previous model using the trimmed
mean inflation rate.
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1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4) (5) (6)
U V/U Horse Race U V/U Horse Race

Unemp. Rate -0.23 -0.46 -4.65 5.72
(1.79) (3.37) (2.82) (3.87)

U-squared 0.02 0.07 0.68 -0.77
(0.28) (0.47) (0.43) (0.54)

U-cubed -0.00 -0.00 -0.03 0.04
(0.01) (0.02) (0.02) (0.02)

V/U -2.00 1.51 1.01 2.66
(3.52) (8.28) (3.24) (5.31)

(V/U)-squared 4.45 0.18 -0.93 -0.11
(5.92) (11.92) (4.44) (6.90)

(V/U)-cubed -2.39 -0.72 0.71 0.22
(2.90) (5.01) (1.56) (2.31)

Constant 0.12 -0.58 -0.55 9.73 -1.06∗ -16.24∗

(3.60) (0.59) (7.04) (5.99) (0.63) (8.58)

R2 0.01 0.03 0.04 0.07 0.28 0.38
R2a -0.01 0.01 -0.01 0.05 0.26 0.35

H0: U terms
F-stat 0.81 0.16 1.34 1.70
P-value 0.49 0.92 0.26 0.17

H0: V/U terms
F-stat 1.64 0.56 41.88 51.35
P-value 0.18 0.64 0.00 0.00

N 140 140 140 156 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Price Phillips Curve: PCE Excluding Food and Energy (PCEXFE)

Using PCEXFE inflation, the V/U ratio model ties with the unemployment rate model
in the pre-pandemic sample. Similarly, in the full sample, the V/U ratio well outperforms
the unemployment rate in both statistical significance and explanatory power.
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B Appendix: Regional Evidence

B.1 List of MSAs

Atlanta-Sandy Springs-Roswell, GA; Chicago-Naperville-Elgin, IL-IN-WI; Dallas-Fort Worth-
Arlington, TX; Denver-Aurora-Lakewood, CO; Detroit-Warren-Dearborn, MI; Houston-
The Woodlands-Sugar Land, TX; Los Angeles-Long Beach-Anaheim, CA; Miami-Fort
Lauderdale-West Palm Beach, FL; Minneapolis-St. Paul-Bloomington, MN-WI; New York-
Newark-Jersey City, NY-NJ-PA; Philadelphia-Camden-Wilmington, PA-NJ-DE-MD; Phoenix-
Mesa-Scottsdale, AZ; Riverside-San Bernardino-Ontario, CA; San Diego-Carlsbad, CA;
San Francisco-Oakland-Hayward, CA; Seattle-Tacoma-Bellevue, WA; Washington-Arlington-
Alexandria, DC-VA-MD-WV; and Boston-Cambridge-Nashua, MA-NH NECTA.

B.2 Extended Kalman Filter Results

Estimated V/U Star

Figure 10: Natural Rate vs. Actual V/U Values for MSAs: Atlanta, Chicago, Dallas,
Detroit
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Figure 11: Natural Rate vs. Actual V/U Values for MSAs: Houston, Los Angeles, Miami,
New York
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Figure 12: Natural Rate vs. Actual V/U Values for MSAs: Philadelphia, San Francisco,
Seattle, Washington DC

Figure 13: Natural Rate vs. Actual V/U Values for MSA: Boston
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Fitted Inflation Rate with V/U Gap

Figure 14: Fitted Inflation Rate (V/U) for MSAs: Atlanta, Chicago, Dallas, Detroit
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Figure 15: Fitted Inflation Rate (V/U) for MSAs: Houston, Los Angeles, Miami, New
York
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Figure 16: Fitted Inflation Rate (V/U) for MSAs: Philadelphia, San Francisco, Seattle,
Washington DC

Figure 17: Fitted Inflation Rate (V/U) for MSA: Boston
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Estimated U Star

Figure 18: Natural Rate vs. Actual U Values for MSAs: Atlanta, Chicago, Dallas, Detroit
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Figure 19: Natural Rate vs. Actual U Values for MSAs: Houston, Los Angeles, Miami,
New York
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Figure 20: Natural Rate vs. Actual U Values for MSAs: Philadelphia, San Francisco,
Seattle, Washington DC

Figure 21: Natural Rate vs. Actual U Values for MSA: Boston
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Fitted Inflation Rate with U Gap

Figure 22: Fitted Inflation Rate (U) for MSAs: Atlanta, Chicago, Dallas, Detroit
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Figure 23: Fitted Inflation Rate (U) for MSAs: Houston, Los Angeles, Miami, New York

15



Figure 24: Fitted Inflation Rate (U) for MSAs: Philadelphia, San Francisco, Seattle, Wash-
ington DC

Figure 25: Fitted Inflation Rate (U) for MSA: Boston
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C Appendix: Wage Analysis

C.1 Test for Non-linearity

1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4)
U V/U U V/U

Unemp. Rate -0.78 -2.80
(1.41) (1.80)

U-squared -0.01 0.29
(0.22) (0.29)

U-cubed 0.00 -0.01
(0.01) (0.01)

V/U -1.15 1.92
(2.22) (1.78)

(V/U)-squared 6.02∗ 0.55
(3.49) (2.28)

(V/U)-cubed -3.33∗∗ -0.30
(1.65) (0.79)

Labor Prod. 0.30∗∗∗ 0.59∗∗∗ 0.15 0.54∗∗∗

(0.08) (0.09) (0.15) (0.11)

Constant 3.44 -1.80∗∗∗ 8.21∗∗ -2.18∗∗∗

(2.86) (0.33) (3.51) (0.37)

R2 0.54 0.51 0.45 0.55
R2a 0.52 0.50 0.43 0.54

H0: U Non-linear terms
F-stat 11.38 10.39
P-value 0.00 0.00

H0: V/U Non-linear terms
F-stat 3.05 0.76
P-value 0.05 0.47

N 140 140 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12: Test for Non-Linearity in the Wage Phillips Curve

The regression table presents the results of testing for non-linearity in the wage Phillips
curve. The findings indicate that the effect of the unemployment rate on wage inflation
is non-linear across both sample periods. The vacancy-to-unemployment ratio (V/U)
has a non-linear relationship with wage inflation at the 5% significance level in the pre-
pandemic sample, but is largely linear in the full sample.
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C.2 Wage UKF

(a) U: Natural Rate vs. Actual Value

(b) V/U: Natural Rate vs. Actual Value

Figure 26: Wage Inflation: UKF-Estimated Star Variables, 1985–2019Q4
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1985Q1-2019Q4 1985Q1-2023Q4

(1) (2) (3) (4)
Unemp. Rate V/U Ratio Unemp. Rate V/U Ratio

motion eq.
(S − S∗)t−1 0.9981∗∗∗ 0.9986∗∗∗ 0.9953∗∗∗ 0.9909∗∗∗

(0.02) (0.02) (0.02) (0.02)

measurement eq.
slack gap -0.6244∗∗∗ 2.1806∗∗∗ -0.3962∗∗∗ 2.7381∗∗∗

(0.11) (0.45) (0.08) (0.48)

slack gap2 0.1409∗∗∗ -2.6521∗∗∗ 0.0441∗ -0.7785
(0.05) (0.96) (0.03) (0.71)

slack gap3 0.0310 -0.7955 -0.0043 -0.3651
(0.03) (1.56) (0.01) (1.33)

labor productivity 0.1211 0.5856∗∗∗ 0.2654∗ 0.6837∗∗∗

(0.12) (0.09) (0.14) (0.11)

constant -0.5679∗∗ -0.6660∗∗∗ -0.2887 -0.5595∗∗

(0.23) (0.22) (0.30) (0.23)

error variances
S∗ eq. 0.01390 0.00021 0.00750 0.00110

(restricted) (restricted) (restricted) (restricted)

S − S∗ eq. 0.0369∗∗∗ 0.0011∗∗∗ 0.1253∗∗∗ 0.0028∗∗∗

(0.00) (0.00) (0.01) (0.00)

PC eq. 0.2995∗∗∗ 0.2908∗∗∗ 0.5002∗∗∗ 0.3858∗∗∗

(0.04) (0.03) (0.04) (0.04)

H0 : β2 = β3 = 0
Wald-stat 10.01 17.38 3.28 3.86
P-value (0.01) (0.00) (0.19) (0.14)

H0 : β1 = β2 = β3 = 0
Wald-stat 81.20 89.27 85.45 113.44
P-value (0.00) (0.00) (0.00) (0.00)

R2a 0.55 0.54 0.50 0.63
N 140 140 156 156

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 13: Wage Phillips Curve Estimation Results with Time-varying Natural Rates
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(a) U: Natural Rate vs. Actual Value

(b) V/U: Natural Rate vs. Actual Value

Figure 27: Wage Inflation: UKF-Estimated Star Variables, 1985–2023Q4
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D Appendix: Model

D.1 Wage Function

Want to show that w is an increasing function of θ.

Proof. Recall that

w =
β
(
r + s + aθ1−γ

)
(1 − β) (r + s + aθ−γ) + β · (r + s + aθ1−γ)

· y,

taking first derivative,

d(numerator)
dθ

= β(1 − γ)aθ−γ

d(denominator)
dθ

= −(1 − β)γaθ−γ−1 + β(1 − γ)aθ−γ

Leaving y out, we have the numerator of dw/dθ as

β(1 − γ)aθ−γ ·
[
(1 − β)

(
r + s + aθ−γ

)
+ β

(
r + s + aθ1−γ

)]
− β

(
r + s + aθ1−γ

) [
−(1 − β)γaθ−γ−1 + β(1 − γ)aθ−γ

]
=β(1 − γ)aθ−γ(1 − β)

(
r + s + aθ−γ

)
+ β2(1 − γ)aθ−γ

(
r + s + aθ1−γ

)
︸ ︷︷ ︸

cancels out

+ β
(

r + s + aθ1−γ
)
(1 − β)γaθ−γ−1 −β2

(
r + s + aθ1−γ

)
(1 − γ)aθ−γ︸ ︷︷ ︸

cancels out

=β(1 − γ)aθ−γ(1 − β)
(
r + s + aθ−γ

)
+ β

(
r + s + aθ1−γ

)
(1 − β)γaθ−γ−1.

Thus, the first derivative is

dw/dθ =
β(1 − γ)aθ−γ(1 − β) (r + s + aθ−γ) + β

(
r + s + aθ1−γ

)
(1 − β)γaθ−γ−1

[(1 − β) (r + s + aθ−γ) + β · (r + s + aθ1−γ)]
2 .

Since the denominator will always be positive, dw/dθ > 0 given

• β is positive between 0 and 1; θ > 0

• (1 − γ) > 0 with CRS assumption.
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D.2 Log-linearization

D.2.1 Job Creation Condition

v = J/L − 1 + u

logv = log (J/L − 1 + u)
dv
v

=
du

J/L − 1 + u

ṽ =
du
v̄

ṽ =
ū
v̄
· du

ū

ṽ =
ū
v̄
· ũ

ũ = θ̄ · ṽ

D.2.2 Labor Market Tightness

θ = v/u

logθ = logv − logu

dθ/θ̄ = ṽ − ũ

θ̃ = ṽ − ũ
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D.2.3 Beveridge Curve

v = a−
1

1−γ · [s(1 − u)]
1

1−γ · u− γ
1−γ

log v = log
(

a−
1

1−γ [s(1 − u)]
1

1−γ u− γ
1−γ

)
dv
v

= − 1
1 − γ

da
a
+

1
1 − γ

ds
s
+

1
1 − γ

(
−du
1 − u

)
− γ

1 − γ

du
u

ṽ = − 1
1 − γ

ã +
1

1 − γ
s̃ − u · du

(1 − γ)(1 − u)u
− γ

1 − γ
ũ

ṽ = − 1
1 − γ

ã +
1

1 − γ
s̃ − 1

1 − γ

u
1 − u

ũ − γ

1 − γ
ũ

ṽ = − 1
1 − γ

ã − 1
1 − γ

(
ū

1 − ū
− γ

)
ũ , since shock to matching efficiency.

23



D.2.4 Wage Function

w =
β
(
r + s + aθ1−γ

)
(1 − β) (r + s + aθ−γ) + β (r + s + aθ1−γ)

, where y is normalized to 1

[̃w] + ˜[r + s + a(1 − β)θ−γ + βaθ1−γ] = ˜[β (r + s + aθ1−γ)]

It follows that percentage deviation of a(1 − β)θ−γ + aβθ1−γ can be derived as:

=

[
a(1 − β)θ̄− + aβθ1−γ

]
−

[
ā(1 − β)θ̄−γ + aβ(θ̄)1−γ

]
ā(1 − β)θ̄−γ + āβθ̄1−γ

=
(1 − β)

[
aθ−γ − āθ̄−γ

]
+ β

(
aθ1−γ − āθ̄1−γ

)
(1 − β)āθ̄−γ + βāθ̄1−γ

Following multivariate first order taylor expansion,

aθ−γ ≈ āθ̄−γ +
(
θ̄
)−γ

(a − ā) + (−γ)ā(θ̄)−γ−1(θ − θ̄)

aθ−γ − ā(θ̄)−γ ≈ (θ̄)−γ(a − ā)− γāθ̄−γ(θ − θ̄) ·
(
1/θ̄

)
(
1/āθ̄

) (
aθ−γ − ā(θ̄)−γ

)
≈ (θ̄)−γ−1 · a − ā

ā
− γ(θ̄)−γ−1 · θ − θ̄

θ̄
,

and thus,

aθ−γ − ā(θ̄)−γ ≈
[
(θ̄)−γ−1 ã − γ(θ̄)−γ−1θ̃

]
āθ̄

≈ ā(θ̄)−γ ã − γā(θ̄)−γθ̃.

Going back to the percentage deviation of a(1 − β)θ−γ + aβθ1−γ, we have:

=
(1 − β)

[
ā(θ̄)−γ ã − γā(θ̄)−γθ̃

]
+ β

[
ā(θ̄)1−γ ã + (1 − γ)ā(θ̄)1−γθ̃

]
(1 − β)āθ̄−γ + βāθ̄1−γ

Thus,

˜[r + s + a(1 − β)θ−γ + βaθ1−γ]

=

[
r + s + a(1 − β)θ−γ + aβθ1−γ

]
−

[
r + s + ā(1 − β)θ̄−γ + βāθ̄1−γ

]
r + s + ā(1 − β)θ̄−γ + βāθ̄1−γ

=

[
(1 − β)āθ̄−γ + βāθ̄1−γ

]
r + s + ā(1 − β)θ̄−γ + āβθ̄1−γ

·
[
(1 − β)

[
ā(θ̄)−γ ã − γā(θ̄)−γθ̃

]
+ β

[
ā(θ̄)1−γ ã + (1 − γ)ā(θ̄)1−γθ̃

]
(1 − β)āθ̄−γ + βāθ̄1−γ

]
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For the right-hand side,

˜[β (r + s + aθ1−γ)] =
āθ̄1−γ ã + (1 − γ)āθ̄−γθ̃

r + s + āθ̄1−γ

Therefore, the log-linearized wage function is:

w̃ =
āθ̄1−γ ã + (1 − γ)āθ̄−γθ̃

r + s + āθ̄1−γ
· β

−
[
(1 − β)āθ̄−γ + βāθ̄1−γ

]
r + s + ā(1 − β)θ̄−γ + āβθ̄1−γ

·
[
(1 − β)

[
ā(θ̄)−γ ã − γā(θ̄)−γθ̃

]
+ β

[
ā(θ̄)1−γ ã + (1 − γ)ā(θ̄)1−γθ̃

]
(1 − β)āθ̄−γ + βāθ̄1−γ

]

=
āθ̄1−γ ã + (1 − γ)āθ̄−γθ̃

r + s + āθ̄1−γ
−

(1 − β)
[
ā(θ̄)−γ ã − γā(θ̄)−γ · θ̃

]
+ β

[
ā(θ̄)1−γ ã + (1 − γ)ā(θ̄)1−γ · θ̃

]
r + s + ā(1 − β)θ̄−γ + āβθ̄1−γ
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